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I n  discussing turbulent shear layers, experimentalists have divided the flow into a 
turbulent region, which is vortical, and a non-turbulent region, which is irrotational 
but unsteady. This paper introduces a theoretical method of decomposing the velocity 
field into potential and vortical components that is compatible with the experi- 
mentalists’ viewpoint. Specifically, only potential motions will exist in the non- 
turbulent region, while the decomposition shows that the turbulent region consists 
of both potential and vortical motions. The kinematic decomposition used is called a 
potential/complex-lamellar decomposition. Compared with the standard Helmholtz 
decomposition, the complex-lamellar decomposition is not widely known, and this 
article includes a discussion of its properties and characteristics. The vector com- 
ponents in this decomposition may be represented by three scalar potentials: 4, @ 
and x, One of the important physical interpretations of the potentials concerns vortex 
lines. Vortex lines are defined by the intersection of a surface @ = constant with a 
surface x = constant. Since these surfaces are a function of time, this establishes a 
sound kinematic theory for following the history of vortex lines in a turbulent or 
viscous flow. 

1. Introduction 
The turbulent/non-turbulent interface recognized by Corrsin ( 1943) separates a 

completely irrotational flow from the vortical flow. Experimentalists have identified 
many complex and interacting processes within the turbulent flow. These processes 
may increase or decrease length scales. They may produce, transfer or destroy 
quantities such as momentum, kinetic energy and vorticity. In  any event, one of the 
major characteristics of these processes is that they occur within the turbulent zone 
and have a limited region of influence. 

I n  order to explain turbulent processes, several investigators have decomposed the 
velocity field. Townsend’s (1976, p. 106) decomposition emphasized large eddies as a 
dominant source of Reynolds stresses, while Hussain & Reynolds (1970) and Landahl 
(1967) calculated a wave-like decomposition. More recently, Libby (1975) decomposed 
the velocity on the basis of whether the flow was turbulent or non-turbulent. This 
decomposition was inspired by the conditional-averaging techniques developed by 
Kovasznay, Kibens & Blackwelder (1970). None of these decompositions have, or 
were intended to  have, a kinematic basis. 

A kinematic decomposition always separates the velocity field into a potential 
component and a rotational or vortical component. The traditional separation is 
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usually called Helmholtz’s ( 1  857) decomposition, although some authors note that 
Stokes (1851) used a similar method at  a prior date. In  this paper, a different de- 
composition is used where the vortical component is complex lamellar. With this 
method the flow in the non-turbulent region becomes completely potential, while 
inside the turbulent region the flow becomes a mixture of potential and vortical 
components. That is, the complex-lamellar component is non-zero only when the 
vorticity is non-zero. The decomposition provides a firm mathematical basis for the 
idea that potential motions exist within the turbulent zone and that vortical motions 
are confined to the turbulent region. 

Several investigators have discussed turbulence phenomena in terms of vortex 
lines and their motion. I n  a viscous flow there is a conceptual difficulty in following 
the history of vortex lines that is sometimes overlooked. One of the major results of 
the paper will show how the potential/complex-lamellar decomposition supplies the 
theoretical basis for discussing vortex-line history. In  a certain sense this is the viscous 
complement to Helmholtz’s theorem, which states that vortex lines follow the material 
particles in an inviscid flow. 

A major section of the paper ( $ 3 )  gives the general characteristics of the potential/ 
complex-lamellar decomposition. Next, the dynamic equations are investigated to 
see how the decomposition influences various terms in the equations. The last section 
discusses the characteristics of the decomposition when it is applied to the turbulent 
wall layer. 

2. Background 
The kinematic components of fluid motion are defined using only local considerations. 

The local instantaneous motion of one particle with respect to a neighbour can be 
divided into deformation and solid-body rotation. If the strain-rate tensor is S and 
the vorticity is o = V x V, then two points a distance dx apart have a relative 
motion consisting of the two components 

dv = dx. S + $0 x dx = dv(,, + dv(,,. (2.1) 

This expression gives a kinematic decomposition of dv which is precise as dx becomes 
small. However, this equation is useless if one tries to decompose the entire velocity 
field into a contribution due to rotational motions and a contribution due to straining 
motions. It is not possible to integrate (2.1) between two points in the flow and call 
the contribution of each integral on the right-hand side a component due to a particular 
motion. In general, the parts on the right-hand side are not exact differentials because 
the separate contributions depend upon the path chosen for integration. 

The successful approach to decomposing the velocity field into kinematic parts is 
to take one component 1 as a potential flow. The necessary and sufficient condition 
for a potential to exist is V x 1 = 0. Therefore 1 contributes nothing to  the vorticity 
while the other component B contributes everything: 

v = 1+p= v$+@. (2.2) 

Since d 1  and dv are exact differentials, their difference dB must also be exact. The 
decomposition is not unique since any potential flow may be used for 1. 
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Equation (2.2) confines the rotational motion to the b component. Acomplete separ- 
ation of deformation and rotation would be achieved if p did not contribute to the 
strain rate, i.e. if V@ were antisymmetric. In  general, this condition is too stringent, 
and one must accept contributions to the strain rate from both 2 and p. 

Two different methods of completing the decomposition will be discussed. I n  one 
method p is required to be solenodial (V . p = 0 )  and in the second p is required to be 
complex lamellar (p . V x p = 0). 

Helmholtz's decomposition, which is the most well known and widely used, will 
be outIined first. It is constructed by further requiring that V .  p = 0, so that any 
sources are confined to the & component; A = V .  v = V . 5. As discussed in many 
textbooks (Phillips 1933; Brand 1947; Aris 1962; Batchelor 1967; Richardson & 
Cornish 1977), fi may be represented by a vector potential B: 

I J = V x B .  (2.3) 

A unique choice for B is made on purely mathematical grounds. The vector identity 
V2B = V ( V .  B) - V x (V x B) will become Poisson's equation, V 2 B  = -0, if one requires 
that V . B = 0. Then the Biot-Savart law is found as a solution for p: 

In (2.4), x is the point of evaluation of 6, x' the position of the element d V  and 
r = x - x'. The potential component & is similarly related to  a distribution of sources 
since ~ 2 6  = A: 

The solutions depend upon only the internal distribution of vorticity and sources. A 
harmonic function 

The fact that  the scalar and vector potentials have been chosen to satisfy the 
Poisson equation allows one to prove that the decomposition has global validity. This 
is one advantage of Helmholtz's decomposition. This choice of potentials also results 
in the Biot-Savart equation for b, and therefore attributes the influence of vorticity 
to remote positions. It is sometimes said that the vorticity induces the remote flow. 
This is not a dynamic result, but a mathematical consequence of requiring that 
V . B = 0. I n  regions where the vorticity vanishes, p will be non-zero and will be locally 
irrotational. Thus the existence of p in a region does not indicate that there is vorticity 
in that region. Dynamically, the propagation of vorticity is accomplished by diffusion 
and convection processes. The Helmholtz method divides the field in a kinematically 
consistent way without regard to dynamic processes. 

is added to 6 as required to satisfy boundary conditions. 

3. Potential/complex-lamellar decomposition 
Viscous turbulent processes are local in nature, thus one would like a decomposition 

where the external flow, including the unsteady motions in the non-turbulent region, 
is completely potential. In  terms of the decomposition, this means that p should 
become zero when the vorticity becomes zero. The potential/complex-lamellar 
decomposition has this property. 

4-2 
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FIGURE 1. Potential/complex-lamellar decomposition and Monge’s potentials. The vortical 
component (3 is in the plane perpendicular t~ w and is normal to x. The potential component a 
is normal to q5. The x- and @-surfaces containw. 

The general mathematics and characteristics of the complex-lamellar decomposition 
will be discussed in this section. Consider again a decomposition where the first com- 
ponent is irrotational and the second component gives the vorticity : 

v = a + p ,  a = V q 5 ,  w = V x p .  (3.1) 

(3.2) 

The vortical component p is next restricted to be in the plane perpendicular to the 
vorticity : 

Kelvin (1851; see Truesdell 1954, p. 23) termed such a vector ‘complex lamellar’ 
(potential flows were called lamellar). If and only if a vector is complex lamellar 
(Phillips 1933, p. 103), it may be represented by two scalar functions: f3 = $Ox. From 
another point of view, if a vector is complex lamellar, there is a function $ such that 
p/$ has a potential. The velocity may then be represented by the scalar functions 
q5, $ and x, which are called Monge’s potentials: 

p . ( v x p )  = p . w  = 0. 

v = V q 5 + $ V x ,  w = V $ x V x .  (3.3) 

Monge’s potentials originated in the study of systems of differential equations 
when the condition of integrability was not satisfied. Clebsch ( 1  858) employed the 
Monge potentials in formulating the inviscid fluid-mechanics equations as a variational 
problem. Lamb (1945, p. 248), Truesdell (1954, p. 27)  and Aris (1962, p. 72) give brief 
discussions of the decomposition of vector fields using Monge’s potentials. 

Some of the important properties of this decomposition are sketched in figure 1. 
Surfaces $ = constant and x = constant intersect to define vortex lines. Consider the 
identities 

and 
(3.4) 1 V$.w = V$.V$XVX = 0 

vx.0 = VX.V$-x vx = 0. 
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The necessary and sufficient condition for a vector surface is that the surface normal 
(V$ or Vx)  be everywhere perpendicular to the vector. Hence 9 = constant and 
x = constant are equations for vector surfaces of the vorticity. From the physical 
viewpoint, one of the attractive aspects of this decomposition is that $ = constant 
and x = constant intersections identify the vortex lines. From its definition (3.1), p 
must lie in the plane which is perpendicular to the vorticity. The potential component 
a connects 13 to v, and the $-surface is then perpendicular to a. Another consequence 
of the fact that p is perpendicular t ow is that the projections of a and v onto the 
vorticity vector are the same: v.w = a.m. 

Monge’s potentials are independent wherever the Jacobian is non-zero. The Jacobian 
turns out to be 

J = a($, 9, x) /a (x , ,  52, = V$. (W x VX)  
= a.w = V.O. (3.5) 

Thus it may become zero because either v or w is zero, i.e. at stagnation points of v 
or w, or because they are perpendicular. Two-dimensional flows are well-known 
examples where v and w are perpendicular. In  these cases, only two potentials are 
independent, in agreement with the fact that the velocity has only two components. 
Conversely, the velocity and vorticity are not usually perpendicular in a three- 
dimensional flow. Then v.w = v. V x v is non-zero. That is, v is not itself complex 
lamellar nor is it  irrotational; therefore both a and p components must exist. The 
vortical component 13 will not be parallel to the velocity because it must be per- 
pendicular to the vorticity. 

decomposition and the common 
Helmholtz decomposition is that the divergences of a and 13 are not zero. In  in- 
compressible flow, the continuity equation V .  v = 0 requires only that the sources 
of a be the sinks of p: 

If the flow is viewed as the superposition of a fluid with potential flow and one with 
vortical flow, then the present decomposition allows for processes which generate one 
fluid a t  the expense of the other. 

This completes the characteristics common to all complex-lamellar decompositions. 
However (3.1) does not completely specify a and 13. There are still an infinite number 
of ways to decompose a vector field into potential and complex-lamellar components. 
The first step in selecting a specific decomposition is to choose a direction for p, the 
choice being restricted to the plane perpendicular to w of course. Since a surface in 
space is completely specified by its normal vector, choosing the 13-direction is equi- 
valent to choosing a set of surfaces x = constant. Choosing a direction for p or choosing 
a set of 2-surfaces amounts to the same thing, and determines the vector decomposition. 
To show that this is indeed the case, one considers the vector field v to be given, 
assumes the vortex surfaces x = constant and proceeds in principle to compute $ and 
$. This process will be considered next. 

For a given vector field the problem of determining the Monge potentials is called 
Pfaff’s problem (Brand 1947, pp. 227-230; Ince 1956, p. 57). Two methods of 
solution will be reviewed. In both methods, the first step is to choose a set of 2-surfaces 
(vector surfaces of w). When w =/= 0, there are two independent choices for these 

One significant difference between the present a, 

A = V . a  = - V . P .  (3.6) 
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surfaces; any ot,her set of rector surftwes can be represented as a function of the 
original choices. In  the first method, any curve in the x-surface is chosen and the 
projection of v onto the curve is formed. Then from (3.1) 

v . a x  = VQ.dX+@VX.dX = d#+@dX 

= d# on x =  constant. 

Therefore t,he potentmid Q is given by 

(3.7) 

n’itli x and Q known, back substitution into (3.2) yields @ from the equation 

@VX = v-04 .  (3.8) 

The reference value # o ( ~ )  changes from one X-surface to the next. 
The second method determines @ first, then deduces 4 from (3.2). Again, a set of 

X-surfwes is chosen. The vorticity field may be deduced from the known velocity 
field, and the vector product ofw and a differential line element produces the equation 

0 x ax = VXd@- V@dX. (3.9) 

When dx lies in t’he X-surface, the vector w x dx is perpendicular to that surface. 
Take any unit normal n which does not lie in the X-surface and form the inner 
product 

n . w x d x  = n x o . d x  = n.VXd@--n.V$dX 

= n.VXd@ on x = constant. (3.10) 

Interchanging the order of operations and solving gives the expression for 4: 

z n xwsdx 
on x = constant. (3.11) 

Now with x and @ known, the potential 4 is found by integrating along any path the 
relationship 

d$ = VQ.dx = (V-@VX).dX. (3.12) 

The choice of X-surfaces would simplify the integration as in (3.7).  
One of the important physical characteristics of the decomposition is illustrated 

by (3.11). The integrand of (3.11) is non-zero only when the vorticity is non-zero. In 
a region of the flow which is purely potential, @ and f3 are zero. The vortical component 
f3 will exist only in regions where vorticity exists to make a contribution to the 
integrand of (3.11). 

The decomposition was begun by choosing a set of X-surfaces. The second step is to  
fix a, numbering system for the X-surfaces. The specific numbering system does not 
affect the vector components. This may be proved by considering a renumbering of the 
surfaces 2 = g ( x ) .  The surfaces 2 = constant and x = constant are the same but have 
different numbers. Then Vf = gfVx and substitution into (3.11) shows that 
$ = ( l / g f )@,  therefore one may conclude that the vector p = $Vf = @Vx is 
unchanged. Although the X-surfaces were only renumbered, the new $-surfaces are 
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FIGURE 2. Reference values of Po are prescribed on any line which connects all 
X-surfaces. This determines the reference values $.,(x) and #.,(x). 

not the same as the old @-surfaces. Also note that the numbering system may change 
with time. 

The third and final step is to fix the reference values do and lcro. This must be done 
for each X-surface. It amounts to choosing either a or P on a line connecting all the 
2-surfaces. Consider a line connecting the X-surfaces as shown in figure 2. Along this 
line one chooses the magnitude of Po (the direction is already fixed by (VX)~).  Then 

values are found from Po = ~ o ( V x ) o .  Since a. - Po is known, the reference values 
$o are found using uo = Vq5. Integrating along the line yields the equation 

q50 - $oo = 1 u0. d x  on the line across the X-surface. 

The integration constant q500 is the value of q50 on one particular X-surface. The value 
of q500 does not affect u = Vq5, nor does it affect the values of @ and x. We have now in 
principle made a unique decomposition of a given velocity field. 

The second important physical characteristic of the complex-lamellar decomposition 
is that it allows one to trace the history of vortex lines in a viscous fluid. Vortex lines 
are marked as the intersection of $- and X-surfaces. Thus two numbers II. and x 
identify a vortex line and allow its time history to be traced. A unique, completely 
specified decomposition implies specific motion for the vortex lines. On the other 
hand, if the vector decomposition is changed by choosing a different P-direction 
(different X-surfaces), the vortex-line history may change. Even with the same 
vector decomposition, i.e. the same u and P, the vortex-line history can be modified 
by changing the X-surface numbering system. 

The fact that there are many ways to follow vortex lines is not a t  odds with Helm- 
holtz's theorem that vortex lines follow the fluid particles in an inviscid fluid. The 
I)- and 2-surfaces may be so chosen that a particular intersection follows the fluid, 
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but they may also be chosen in other ways. For example, in a steady flow the $- 
and X-surfaces would usually be chosen to give stationary vortex lines. 

A unique complex-lamellar decomposition specifies the time development of vortex 
lines. The freedom to make the decomposition in many ways provides an opportunity 
to define vortex lines in a manner that has dynamic significance. 

Further insight into the complex-lamellar decomposition is gained by relating it 
to the Helmholtz decomposition. One can in principIe solve for the potential flow 
a = Vqb. The governing equation is 

V.a = V.v-V.p, V2q5 = a + A ,  (3.13) 

where the sources 5 E V.v and A = - 0.p are assumed known. The solution, including 
the harmonic function, is 

a = V@+- 

The vortical component is found from a + p = E + F as 

(3.14) 

(3.15) 

This representation of a and p is valid if they are bounded. If they become unbounded, 
then a singularity, such as a point source, must be added to the right-hand sides. 
Since v is bounded, the same singularity occurs in both a and f3, but with opposite 
signs. In Helmholtz’s decomposition exists at  remote positions where the voxticity 
is zero. In  the complex-lamellar decomposition f3 is zero where the vorticity is zero. 
Thus (3.15) implies that a distribution of sources A within the vortical region induces 
a flow which exactly cancels fi at remote positions, The flexibility in the a, p decompo- 
sition reflects the fact that there are many ways to choose a source distribution 
within a region which produces a given harmonic potential outside that region 
(Kellogg 1953, p. 197). 

4. Dynamic equations 
A specific choice of X-surfaces, or equivalently the P-direction, is needed to complete 

the decomposition. Turbulence is only one of several types of flows in which there is 
strong interaction between vortical and potential components. One can make different 
choices of p depending upon the physical situation. In fact, in principle we could 
make different definitions for wall turbulence and free shear layers. In this section, the 
dynamic equations are examined to see how the final choice of p-direction influences 
various terms. The object is to specify the @-direction in a way which has dynamic 
significance. 

The momentum equation may be written in a form which splits the convective 
terms v. Vv = V(gv2) - v xw into a pressure-like component and the transport of 
momentum perpendicular to the vortex lines. The term v x w  has been called the 
vortex force and also the Lamb vector. It is the v xw component which leads to the 
Reynolds-stress terms in turbulence (Tennekes & Lumley 1972, p. 78). Substituting 
the decomposition into the v xw terms, the momentum equation reads 

av/at + V@/p + &t?) = a x o  + (3 xw + vV x o .  (4.1) 
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FIauRE 3. Decomposition with a-direction chosen in v, w plane. Vortex force v x u ,  x w  and 
a x w  collinear. The 4- and X-surfaces contain v xw, while the 9- and X-surfaces contain w. 

For non-zero a and f3, a x w could only be eliminated by having a and w parallel. This 
is too restrictive, since it would determine both the direction and the magnitude of 
p (see figure 1) .  Therefore it is not possible to choose the f3-direction such that all of 
the Reynolds stress is attributed to one velocity component. A physical interpretation 
is that the vortex force v x w is concerned only with the velocity component perpen- 
dicular to the vortex lines. Whether this velocity arises from potential or vortical 
motions is immaterial. This is an essential interaction between the potential and the 
vortical flows. 

Since one cannot eliminate either a x w or p x o, the next best possibility would be 
to arrange things such that they are in the same direction and will simply add in 
magnitude to provide v x w. This is accomplished by choosing the f3-direction to be 
in the v, w plane in addition to the requirement that f3 is perpendicular to the vorticity 
(see figure 3). The X-surfaces now take on added physical significance. They are vector 
surfaces of the vortex force or Lamb vector v x w, as well as vector surfaces of the 
vorticity. Each X-surface contains an orthogonal set of lines: the vortex lines and the 
vortex-force or Lamb lines. Intersection of a $-surface with the X-surface gives a 
vortex line, while intersection of a $-surface with the X-surface gives a vortex-force line. 

As an aside, note that (4.1) can be integrated along vortex lines for a flow where 
viscous diffusion may be neglected. The motion in the outer turbulent region is 
thought to be of this type. The term v x w is perpendicular to the vortex lines and 
will not make any contribution to the integral. The unsteady term is written as 

- av = v  [:+$%I - g v $ + g v x .  
at 

The last two terms vanish when integrated along a vortex line since o . V$ = w . V x  = 0. 
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The final equation which holds along a vortex line is 

a+ ax P 
- + + - + - + + v 2 =  C( t ) .  
at at p (4.3) 

If the flow has no vorticity $ = 0, and the more familiar form of the unsteady 
Bernoulli equation is retrieved (Lamb 1945, p. 249). 

Next the vorticity transport equation will be considered. Fluctuations in vorticity 
are one of the accepted characteristics of turbulent flows. The vorticity equation is 

D o l D t  =o. V v +  vV20  = o. V a + o .  V p  + vV20. (4.4) 

A term of major interest is the production of vorticity by turning and stretching. It 
was pointed out previously that the strain rate cannot be isolated into one component. 
Therefore the @-direction cannot he chosen such that V p  has any special symmetries. 
Likewise, the convective terms a .  V w  and p. V o  cannot be attributed to only one 
component. There are no obvious simplifications possible for this equation. 

There is one dynamic equation that simplifies when (3 is chosen in the V, w plane. 
Forming the scalar product of the momentum equation with a then with p, and noting 
that  a .  v x o  = 0 and p. v xw = 0 yields two independent equations: 

and (4.5) 
a .  &/at + a .  V($v2)  = -p - la .  V p  -t v a .  V x o  

p. av/at + p. v ( p )  = - p - l p .  vp + Vp. v 
The sum of these equations is the usual kinetic energy equation. The specific choice of 
the p-direction, such that p, v a n d o  are coplanar, allows the kinetic energy equation 
to  be split into two symmetric and independent equations. This may be useful, as the 
kinetic energy equation is frequently used in turbulence modelling. 

An essential element of a three-dimensional flow is that  the vortex lines and the 
streamlines do not meet a t  right angles. A measure of the three-dimensionality is 
given by V.O. A dynamic equation for v.w can be derived by dotting v with the 
vorticity equation, dotting w with the momentum equation, then rearranging and 
adding the equations to produce 

(4.6) 

The inner product v . o  may be an interesting property of a flow, however it changes 
because of changes in the magnitudes of v a n d o ,  as well as changes in the angle 
between them. Letting y be the cosine of this angle gives v.w = vwy, where v and w 
are the magnitudes of the vectors. Multiplying (4.6) by v.w produces an equation 
for the substantial derivative of +v2u2y2. After splitting this derivative, Dw2/Dt and 
Dv2/Dt  can be eliminated by using the dynamic equations for these quantities. Some 
slight rearrangement yields the final equation for the cosine of the angle between 

D (  v . O) /Dt = - p - l w .  V p  + ( vw ) : S + V[W . V 2 v  + v . V 2 0 ] .  

w 
1 v a n d o :  

2= - - W . V p + ( V t , ) : S + v  
Dt  pv (4.7) 

where W = t,- yt,, V = to-  yt, and t ,  and t ,  are unit vectors tangential to the 
vorticity and velocity vectors. The special directions W and V play a prominent role 
in changing the angle between v a n d o .  I n  a two-dimensional flow, or a nearly two- 
dimensional flow such as the sublayer, the angle between v a n d o  is 9O0, so that 
W = t, and V = t,. This is a point of reference in interpreting the terms in (4.7). 
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The first term in (4.7) shows that the pressure gradient inducing flow in the W 
direction turns the velocity vector into the vorticity vector, thereby closing the angle 
y .  It is scaled by 1 /v because a given pressure gradient will cause a larger rate of closure 
if v is small than if it is large. This is also the only term of a non-local nature. The 
pressure field depends upon the surrounding flow, while all other terms contain only 
the local velocity and its derivatives. The first term illustrates how a pressure gradient 
imposed in the vorticity direction of a two-dimensional flow causes the flow to become 
three-dimensional. The next term Vt,: S represents the closure of the angle because 
of the local strain rate S. The last two terms represent viscous diffusion into the point 
in question; W .  V2v represents diffusion of momentum which is aligned with W and 
V. V2w represents diffusion of vorticity which is aligned with the V direction. 

When the P-direction is chosen in the v,w plane, the relation between the potential/ 
complex-lamellar decomposition and the y equation is very simple. Since P andw 
are a t  right angles, y may be reinterpreted as the sign of the angle between the velocity 
and the vortical component P. Other choices of the @-direction will not give a simple 
relationship. 

After examining the several dynamic equations, it seems that choosing P to be in 
the v,w plane is best. This choice breaks the vortex force v x u  into two collinear parts 
a xw and j3 xw. Also, with this choice the Monge potentials have additional physical 
meaning. The 4- and X-surfaces are vector surfaces of the vortex-force vector v xw 
and their intersections give lines tangential to v xw. Choosing P to be in the V, w 
plane also allows the kinetic energy equation to be split into two independent equations. 

5. Decomposition of wall turbulence 
Application of the complex-lamellar decomposition to an incompressible turbulent 

wall layer will be described in this section. The P-direction will be chosen to be in t,he 
v, w plane as discussed previously. In  a purely two-dimensional flow, where v and w 
are perpendicular, this means that f3 is in the same direction as v and that the x- 
surfaces lie across the layer. The turbulent case is of course much more complicated, 
and the best one can do is discuss how this assumption leads to well-defined P-directions 
throughout the region. The interface, the interior and the wall regions will be considered 
in turn. 

The interface between turbulent and non-turbulent flow is defined as the surface 
where the vorticity vanishes in some sense. Since V .o = 0 in addition t o o  = 0,  the 
same requirements are imposed on the vorticity a t  the interface as are encountered 
for the velocity a t  a solid wall. By arguments similar to those for defining a limiting 
streamline on a wall, the limiting vortex lines in the interface may be defined (one 
can also show that aw,/an = 0 ) .  The fact that o has a limiting direction in the interface 
is important, since the v, w plane and the P-direction are therefore well defined (see 
figure 4). This means that V x  is not zero a t  the interface. Now at the interface 
P = +Vx = 0, so it must follow that the interface is a surface $ = 0. Furthermore 
since the vorticity o = V$ x V x  is zero, the gradient V$ should also be zero at the 
interface. These are idealizations. There must be a slight amount of vorticity in the 
non-turbulent region so the 2-surfaces actually cover that region also. Assigning 
$ = 0 in the non-turbulent region gives that region its completely potential character 
with v = a. 
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FIQURE 4. Turbulent/non-turbulent interface. $ = 0, V$ = 0, 
X-surfaces contain surface vortex lines. 

The flow within the turbulent region is discussed next. The @-direction (and Vx) 
is defined by t'he velocity and vorticity vectors. If one of these is zero then Vx 
may not be defined. In an attached flow the velocity is never zero away from the wall. 
Therefore @ and V x  have a well-defined direction everywhere in the turbulent region, 
with the possible exception of places where w = 0. It is not necessary that V x  is singular 
at  these points, but it is possible. We have just discussed the interface where w = 0 on 
a surface, but V x  was still well defined. 

It is possible that the vorticity is zero at  Iocal points within the turbulent region. 
The vorticity obeys a convective-diffusive differential equation. It might be expected, 
especially in light of the fact that vortex tubes have a constant strength, that all three 
components of the vorticity will not be zero simultaneously. However, the vorticity 
equation 

(5.1) 

differs from the heat-conduction equation by the vortex turning and stretching term. 
This term may in some way produce a local zero in the vorticity. Experimental obser- 
vations tend to support this view. Aircraft trailing vortices, for example, have been 
observed to loop and pinch off a ring vortex. The pinching-off process, as depicted in 
figure 5(a),  must have two vortex lines at  one point, and therefore a vorticity stag- 
nation point. These considerations lead to the assumption that there may be points 
within the turbulent region where the vorticity vector is zero, but that these points 
are isolated. If a singularity in Vx  and @ occurs, it must be matched by a corresponding 
singularity in a since v is bounded. Thus the singularity will be a point potential 
singularity. 

I>o/Dt = w . vv + vv2w 
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FIGURE 5. Vortex lines: (a )  pinching-off process with internal' stagnation' pointw = 0; ( b )  vortex 
lines in solid wall. @-, x- and #-surfaces contain vortex lines, x- and $-surfaces are perpendicular 
to the wall and f3 = - 01 is in the direction of the streamline. 

Finally, the situation a t  the wall is considered. The direction of the velocity is given 
by the limiting streamlines. The vortex lines (for a Newtonian fluid) lie in the wall and 
are perpendicular to the streamlines. Choosing the P-direction in the v , o  plane means 
that P is directed along the wall in the streamline direction. Consequently, the 
X-surfaces are perpendicular to the wall and their intersections with the wall form the 
vortex lines as shown in figure 5 ( b ) .  The no-slip condition requires p = - a = - Vq5, 
so a also lies in the wall, with $-surfaces which are tangential to the X-surfaces. Vortex 
lines are given by the intersections of x- and $-surfaces; hence the $-surfaces also 
intersect the wall on the vortex lines but not at  right angles. Another possibiIity is 
that the wall is the surface @ = 1. This occurs only for a special choice of the X-surface 
numbering system. Two final facts are noted. From the relation between the wall 
shear stress and vorticity (T = ,am x n) one may show that ap/an = av/an. This also 
requires that aa/an = 0 at the wall. 

The major points of interest so far in this section are the X-surfaces. They must 
leave the wall a t  goo, heading into the turbulent region. In  the turbulent region V x  
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w=o 

FIGURE 6. Configurations of ,y-surfaces which give lines wherew = 0. 

n 

Wall 

FIGURE 7.  Configurations of X-surfaces which givew = 0 on a line. 

is well defined, with the possible exception of isolated points where the vorticity is 
zero. The X-surfaces arrive a t  the turbulent/non-turbulent interface a t  some angle, 
and the interface is the surface 11. = 0. 

A complete complex-lamellar decomposition requires one t o  specify a set of x- 
surfaces, reference values of Po on a line connecting the X-surfaces, and the X-surface 
numbering system. The reference values for the turbulent wall layer are taken a t  the 
interface where Po = 0. The next question is, does this supply reference values for all 
the 2-surfaces? Are there any X-surfaces which do not ultimately intersect the inter- 
face 1 The answer is that all X-surfaces do intersect the interface if some fairly plausible 
assumptions are made. I n  the next few paragraphs several different configurations 



Potentiallcomplex-lamellar velocity decomposition 111 

of X-surfaces which do not intersect the interface will be discussed. Each of these will 
be shown to violate an assumption about the flow. 

Figures 6 and 7 show several configurations of X-surfaces which are not connected 
to the interface. Consider the possibility that the 2-surfaces which leave the wall 
return a t  some downstream point. If this happens, there are two wall vortex lines 
which have the same value of x. Therefore x must have a maximum or minimum value 
on an intermediate wall vortex line. Since the X-surfaces are perpendicular to the wall, 
this means that V x  = 0 on that vortex line. This is prohibited, since the vorticity 
o = V@ x V x  would be zero, resulting in zero shear stress and a local line of flow 
separation. The 2-surfaces, once they leave the wall, never return as long as the flow 
is attached. 

I n  the interior of the turbulent fluid, one might envisage structures where the x- 
surfaces are closed, so that they enclose a region of the fluid. This structure cannot be 
connected to  the wall by a line, since that means that the surrounding X-surfaces 
form closed loops on the wall and again produce a violation of the attached-flow 
assumption. If a X-surface connects the enclosed region, there is a line of points where 
V x  is undefined. Choosing a to be in the v, o plane produces a well-defined direction 
for V x  except when o = 0. The additional assumption that w = 0 only a t  isolated 
points then prohibits this configuration. The interior of a region of closed X-surfaces 
also gives invalid results. Consider the @-surfaces within the region. If they coincide 
with the 2-surfaces then the vorticity is zero throughout the region, since V$ and V x  
are parallel. If they do not coincide, then @ reaches a maximum and a minimum on 
each X-surface. At these points, the x- and @-surfaces are tangential, and again a 
prohibited line where o = 0 is obtained. 

Another configuration to consider is where the X-surfaces leaving the wall bend 
over and roughly align themselves with the streamlines, so that they never intersect 
the interface. If this happens, then p is roughly perpendicular to the wall and the 
vorticity is nearly in the same direction as the velocity. The vortex force v x o ,  which 
is responsible for the Reynolds stress, becomes small and generally directed in the 
spanwise direction. This could occur locally, however we do not anticipate that i t  
could continue indefinitely. I n  general then, the X-surfaces proceed across the layer 
and intersect the interface. At this interface the reference values Po = 0 are assigned 
and the vector decomposition completed. 

6. Vortex-line history 
At any instant one can in principle draw the vortex lines in a fluid. From one 

instant to the next we cannot tell which vortex lines have vanished and which have 
moved to  a new position without giving the lines an identity. The complex-lamellar 
decomposition identifies vortex lines as the intersections of @- and X-surfaces. Two 
specific values of $ and x mark each line. This section considers the problem of choosing 
the X-numbering system and how it should change with time. Specifying the numbering 
system will determine the vortex-line motion. Consider for a moment the steady flow 
of an inviscid fluid carrying vorticity. A certain complex-lamellar decomposition is 
made and the X-numbering system is chosen to be independent of time. The vortex 
lines are then stationary. Making the 2-numbering system change with time gives 
motion ljo the $, x intersections. Helmholtz’s theorem that vortex lines in an inviscid 
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FIGURE 8. Vortex-line motion prescribed by choosing the X-numbering system at the turbulent/ 
non-turbulent interface. The interface at  time 0 is given by the double line. The solid line is the 
same X-surface for both time 0 and time 1. A is the X-intersection with the interface a t  time 0 
while B' is the intersection a t  time 1. The dashed line is the interface at  time 1. ACis the diffusion 
distance of the interface during the time interval. BB' is the distance the material point B has 
travelled during the interval. The direction of AC is n, and the direction of A B  is t, x t,. 

flow are material lines implies a special choice for the time dependence of the x- 
numbering system (Lamb 1945, p. 249). This special choice is attractive, since then 
the motion of the vortex lines is in agreement with the dynamic equation governing 
the vorticity of an inviscid fluid. 

Including the influence of viscosity allows diffusion and destruction of vortex lines. 
The proper choice of X-surface motion which is compatible with the dynamics is no 
longer clear. However, in the case of boundary layers a reasonable choice may be 
made. Vorticity actually contaminates the whole field out to infinity, where the 
external stream is a pure potential flow. Requiring that the X-surfaces a t  infinity 
travel a t  the external stream velocity will make the $, x intersections follow the flow 
at this point. Thus, a t  the place where the flow becomes irrotational, the vortex 
lines will move according t o  Helmholtz's theorem. 

This idea must be modified slightly when the concept of a turbulent/non-turbulent 
interface is introduced. Figure 8 shows the interface a t  two different times. Material 
point A is on the interface initially and moves to A' after a time dt. The surfaoe 
x = constant which initially contains A continues into the non-turbulent fluid. The 
direction of the X-surface is t, x t,, under the assumption that the @-direction is in the 
v , o  plane. The material point B on the X-surface is so located that i t  is on the interface 
at time t +dt. Then throughout the time interval B is in irrotational motion. If the 
2-surface numbering system is chosen such that B is on the same surface throughout 
the interval dt, then the X-surface will follow the fluid particle, and will be in agree- 
ment with Helmholtz's theorem and the dynamic vorticity equation. 

The motion of the 2-numbering system can in principle be specified by giving the 
velocity of a X-surface at the interface, i.e. lim AB'ldt. Inorder to compute thisvelocity, 

denote the diffusion velocity of the interface normal to  itself by V,. The distance AT 
dt+O 
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is then V, dt. Now the cosine of the angle CBA can be computed two ways: 
-- 

cos CBA = q. (t, x t,) = AC/AB. 

The unit vector normal to the interface is denoted by ni. Combining these relations 
gives the velocity of A% (which is in the direction t, x tw): 

Next the distance BB' is related to the velocity of point A by two terms of a Taylor 
series : - 

B B ' / d t  = VB = V, + A X .  VV,. (6.3) 

Since 
dt -+ 0. The final result for the velocity of the vortex line a t  the interface becomes 

is of order dt,  the motion of B with respect to A drops out in the limit as 

The velocity consists of the local fluid velocity plus the viscous diffusion velocity in 
the direction of the X-surface. 

Since the X-numbering system does not influence the vector components, a given 
vector decomposition allows many choices for the vortex-line histories. The choice 
made above requires the vortex lines to move with the fluid particles in the region 
of irrotational flow. This also determines the vortex-line motion in the vortical or 
turbulent region. 

7. Summary 
There are many ways to make a kinematic decomposition of a velocity field into 

irrotational and vortical components. A potential/complex-lamellar decomposition is 
made by requiring that the vortical component p be perpendicular to the vorticity. 
The vector components may be represented in terms of Monge's potentials q5, $ and 
x such that a = Vq5 and p = $.Ox. To make a complet'e and unique decomposition, 
three additional requirements are imposed. First, a specific direction for f3 is chosen 
in the plane which is perpendicular tow. This is equivalent to choosing the direction 
V x  or specifying the shape of the X-surfaces. The second requirement is to give reference 
values Po along any line which connects all the X-surfaces. These two requirements 
determine the vector components a and p, but not the potentials. The third require- 
ment is to specify how numbers are assigned to the 2-surfaces, including a time 
dependence. Numbering the X-surfaces also completely determines the $-surfaces. 

There are two major physical interpretations which derive from the decomposition. 
The vortical component (3 indicates the presence of vorticity, and vortex lines are 
identified and their movement marked by the intersections of $- and 2-surfaces. 

Investigating the dynamic equations which govern incompressible flow leads to 
choosing the p-direction in the v, w plane. Such a choice breaks up the vortex force 
v xw into two collinear components a x o  and P xw. It also defines the vortex force 
lines aEi the intersections of $- and X-surfaces. Another simplification resulting from 
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this choice is that the kinetic energy equation splits into two independent equations 
of similar form. 

In applying the decomposition to the tu&ulent wall layer, the p-direction was 
taken to be in the v, o plane, the reference value Po = 0 was assumed at  the interface, 
and the motion of the 2-surface numbering system chosen such that interface vortex 
lines would follow the fluid particles. With these assumptions, the decomposition was 
shown to give a rigorous basis for dividing the shear layer into a completely potential, 
non-turbulent region and a turbulent region which contains both potential and 
vortical components. The decomposition also provides a rigorous basis for discussing 
the history of vortex lines even in a region where viscosity is important. 
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